Acta Crystallographica Section D
Biological Crystallography
ISSN 0907-4449

Marjorie M. Harding

Institute of Cell and Molecular Biology, University of Edinburgh, Michael Swann Building, Edinburgh EH9 3JR, Scotland

Correspondence e-mail:
marjorie.harding@ed.ac.uk

The geometry of metal-ligand interactions relevant to proteins. II. Angles at the metal atom, additional weak metal-donor interactions

Geometrical data which could be of relevance in the structure determination, structure refinement, assessment or understanding of metalloproteins have been extracted from the Cambridge Structural Database (CSD). The CSD contains crystallographic data from 'small-molecule' structures determined by X-ray or neutron diffraction to an accuracy and precision much better than that of most current protein structure determinations. Structures of $\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Cu}$ and Zn complexes with ligands whose donor atoms may be only N, O, S or Cl have been selected and analysed in terms of the geometry of the metal coordination group - octahedral, tetrahedral, tetragonal pyramidal etc. The r.m.s. deviation of all the interbond angles around the metal atom provides a measure, δ, of the deviation from ideal geometry. Average values of δ are tabulated for the different metals in each type of complex. For simple non-chelated complexes of Mn, Fe and Zn , distortions of up to 5° in octahedral complexes and 10° in tetrahedral complexes are found to be normal and seem likely to be a consequence of packing effects, ligand bulk or intramolecular effects. Substantially larger distortions are found for some other metals and geometries and are common for chelated complexes. Brief comments on six-, seven- and eight-coordinate Ca complexes are included. Tables are also presented showing that for four- and five-coordinate complexes of Zn and Cu it is quite common to find additional weakly coordinated ligands, usually with N or O donor atoms and with $M \cdots \mathrm{~N}, \mathrm{O}$ distances longer than a normal bond length but shorter than a van der Waals contact, e.g. in the range $2.4-3.0 \AA$ for Zn and $2.6-3.0 \AA$ for Cu . Although the contributions to bond valency or bonding energy of such interactions may not be great, their effect on geometry can be considerable; they can, for example, cause much larger distortions of tetrahedral Zn complexes than indicated above.

1. Introduction

Metalloproteins occur widely and have many important functions. In some, the metal atom or ion is a part of the active site for a catalytic process; in others, the metal appears to have a role in maintaining structure. The present studies are concerned with the geometry of the interaction of a metal atom with the ligand groups around it, using the accurate information which can be obtained about this geometry from the Cambridge Structural Database (CSD; Allen \& Kennard, 1993a,b). In the previous paper (Harding, 1999), tables giving interatomic distances and some details of ligand geometry were assembled for the metals $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Cu}$ and Zn in their complexes with water molecules, carboxylate groups, imidazole groups etc., ligands which are analogues of the

Received 6 January 2000
Accepted 17 April 2000
amino-acid side chains available in proteins. The objective of that study was to make conveniently available to protein crystallographers accurate information on preferred bond distances for a selection of metals and ligands which commonly occur in proteins. This information could be of use in the interpretation and fitting of models to electron-density maps calculated with limited resolution data, for target distances in restrained refinement or in the validation of protein structural data (but not of course all three at once!). It could also be hoped that the analysis would contribute to the basic understanding of the function of different metals in metalloproteins.

It seemed desirable to follow this with a similar analysis of the angles around the metal atom in its complexes to indicate, for example, the extent to which $M L_{6}$ deviates from regular octahedral geometry, where L is a ligand donor atom and the ligand may consist of one atom or a group of atoms. The present analysis deals mainly with $\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Cu}$ and Zn as $M L_{6}, M L_{5}$ and $M L_{4}$, but some briefer comments on Ca are included in six-, seven- and eight-coordinate complexes. The ligand donor atoms are restricted to $\mathrm{N}, \mathrm{O}, \mathrm{S}$ or $\mathrm{Cl} ; \mathrm{Cl}$ is included, although it is probably not biologically very important, because of its resemblance to S in donor properties. The other aspect of metal-ligand geometry addressed here is that of weak interactions between metal atoms and N or O donor atoms in ligands, interactions that appear to be substantially longer than the usual $M-\mathrm{O}$ or $M-\mathrm{N}$ single bonds but significantly shorter than a van der Waals contact. A few examples of the occurrence of such interactions were given in the previous paper, but it proved essential to examine them more systematically because of their effects on the stereochemistry at the metal. Others have also commented on these interactions (Auf der Heyde \& Burgi, 1989) and Auf der Heyde \& Nassimbeni (1984) point out that zinc shows a smooth progression from four- to five-coordinate states.

A variety of different indicators of distortion from regular polyhedral geometry have been used by others. The indicator of Zabrodsky et al. (1993) is appropriate to any polyhedron and is the mean-square displacement of all the vertices from the nearest regular polyhedron. Howard et al. (1998) have used a measure $\operatorname{Rc}(\chi)$ which measures angular distortions only, as a percentage of their mean values. The measure δ used here is very similar to $\operatorname{Rc}(\chi)$ - it is the r.m.s. deviation of the angles from those in the regular polyhedron and is directly proportional to $\operatorname{Rc}(\chi)$; the constant of proportionality is the r.m.s. angle at the metal atom in the ideal geometry (tetrahedral, 109.5°; square planar, 127.3°; trigonal bipyramidal, 111.4°; octahedral, 113.8°) and so is slightly different for different ideal geometries. Thus δ and $\operatorname{Rc}(\chi)$ deal only with angular distortions, whereas the measure of Zabrodsky et al. (1993) also includes variations in the distances of ligand donor atoms from the central metal atom. Further, in evaluating δ or $\operatorname{Rc}(\chi)$ no preliminary fitting (i.e. reorientation) of the observed polyhedron to an ideal one is performed; if this were performed, as it is by Zabrodsky et al. (1993), and then r.m.s. deviations of bonds from the ideal directions used for δ or $\operatorname{Rc}(\chi)$, their values would be numerically a little smaller. Some
more extensive studies on selected metals have analysed distortion in relation to the symmetry elements of $M L_{4}$ or $M L_{5}$

Figure 1
Search fragments. L_{1}, L_{2} etc. may be $\mathrm{N}, \mathrm{O}, \mathrm{S}$ or Cl . Bonds are of type 'any'. Other atoms or groups may be connected to L but not to M. The complex is described as unchelated if M is an acyclic atom and chelated if it is a cyclic atom. $a_{i j}$ is the angle $L_{i}-M-L_{j}$. (a) M has total coordination number 6 and the labels are assigned so that a_{12} is the largest of the 15 angles and a_{34} is the next largest. (b) M has a total coordination number 5 and the labels are assigned so that a_{12} is the largest of the ten angles and a_{34} is the next largest. The resultant labelling of a trigonal bipyramid (left) or square pyramid (right) is shown. (c) M has a total coordination number 4. The labels are assigned so that a_{12} is the largest of the six angles. A tetrahedral (left) and a square-planar arrangement (right) are shown. (d) $M L_{4}$ fragment with an additional partial bond. The $M L_{4}$ fragment is defined as in Fig. 1 $(c) . M \cdots L_{5}$ is a 'non-bonded contact', less than $3.0 \AA$ in length, with $L_{5}=\mathrm{N}$ or O . (A fragment found may have more than one such non-bonded contact.)

Table 1
$M L_{6}$ complexes, numbers ($N_{\text {obs }}$) and mean values of $\delta_{\text {oct }}$, in degrees, from ideal geometry, together with their sample standard deviations.
The ligand donor atom may be $\mathrm{N}, \mathrm{O}, \mathrm{S}$ or Cl . The October 1999 release of the CSD was used and the connectivity recalculated (in QUEST 5.17) assuming the maximum $M-\mathrm{N}, \mathrm{O}$ distances for a bond shown; $M-\mathrm{S}$ and $M-\mathrm{Cl}$ may be longer by 0.34 and $0.31 \AA$, respectively. The standard deviations of the means may be obtained by dividing the sample standard deviation by $N_{\text {obs. }}^{1 / 2}$.

	Maximum distance assumed for $M-N, O$ bond (\AA)	Non-chelated		Chelated	
		$\left\langle\delta_{\text {oct }}\right\rangle(\sigma)$	$N_{\text {obs }}$	$\left\langle\delta_{\text {oct }}\right\rangle(\sigma)$	
Mg	2.45	120	$1.7(1.1)$	123	$8(6)$
Mn	2.45	86	$2.8(1.8)$	759	$9(6)$
Fe	2.35	69	$2.2(1.5)$	1094	$8(4)$
Cu	2.45	60	$1.9(1.4)$	258	$8(5)$
Zn	2.35	79	$2.4(1.4)$	242	$9(6)$
Ca	2.80	41	$5.4(5.7)$	33	$16(11)$

and/or the transformation paths between tetrahedral and square planar (Klebe \& Weber, 1994; Raithby et al., 2000) or trigonal bipyramidal and tetragonal pyramidal (Auf der Heyde \& Burgi, 1989; Auf der Heyde, 1994).

References to related studies of metal-ligand geometry are given in the previous paper (Harding, 1999); to these should be added a recent valuable comparison of many properties of Mn with those of Mg and Zn , which are relevant to the possibility of their interchange in metalloenzyme systems (Bock et al., 1999).

2. Methodology

The programs QUEST and VISTA (Allen \& Kennard, $1993 a, b$) were used for search and analysis of the October 1998 release of the CSD for four- and five-coordinated complexes and of the October 1999 release for six-, seven- and eight-coordinated complexes. All searches required $R \leq 0.10$ and accepted only non-polymeric structures with no disorder and no errors unresolved at the time of their inclusion in the database. The search fragments used are shown in Fig. 1. N, O, S or Cl were allowed as ligand donor atoms. Recalculation of the metal-atom connectivity at the time of search (QUEST version 5.17 and later versions) was performed throughout, using maximum allowable metal-donor atom distances chosen in the light of the distributions of distances actually observed in a variety of relevant complexes (Harding, 1999).

For $\mathrm{Cu}^{\mathrm{II}}$ compounds, entries were only accepted if they contained the text (ii) in the compound name and no other oxidation-state indicators, (i), (iii) etc.; oxidation states were similarly specified for Cu^{I}. An attempt was made to deal with $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Mn}^{\mathrm{III}}$ and $\mathrm{Fe}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{III}}$ similarly, but unfortunately this very substantially decreases the number of entries available - only 28% of Mn entries and 20% of Fe entries have oxidation state specified, whereas 84% of Cu entries do. Therefore, all Mn and Fe entries were used and some attempt was made at the end of the analysis to see what significance oxidation state might have. For Mg and Zn , all database entries were used and assumed to be oxidation state 2 .

Table 2
$M L_{4}$ complexes.
(a) Numbers of $M L_{4}$ complexes ($N_{\text {obs }}$) with and without additional weak interactions $M \cdots \mathrm{~N}, \mathrm{O}$ up to $3.0 \AA$.

	Mg	$\mathrm{Mn} \dagger$	$\mathrm{Fe} \ddagger$	Cu^{I}	$\mathrm{Cu}^{\mathrm{II}}$	Zn
Without additional interactions	40	76	369	237	858	569
With one additional interaction	0	1	4	4	707	49
With two additional interactions	0	2	2	0	1850	86
Max. length assumed for $M-\mathrm{N}, \mathrm{O}$ bond (\AA)	2.45	2.45	2.35	2.45	2.25	2.35

(b) $M L_{4}$ complexes without additional weak interactions, numbers and mean values of $\delta_{\text {tet }}$ and $\delta_{\text {sqp }}$, in ${ }^{\circ}$, from ideal geometry, together with their sample standard deviations. The standard deviations of the means may be obtained by dividing by $N_{\text {obs- }}^{1 / 2}$

		Non-chelated				Chelated
		Tetrahedral	Square planar		Tetrahedral	Square planar
Mg	$N_{\text {obs }}$	8	0	32	0	
	$\langle\delta\rangle(\sigma)$	$11(3)$		$16.7(5.4)$		
Mn	$N_{\text {obs }}$	31	0	34	11	
	$\langle\delta\rangle(\sigma)$	$4.0(3.2)$		$12(5)$	$1.1(1.0)$	
Fe	$N_{\text {obs }}$	150	1	207	12	
	$\langle\delta\rangle(\sigma)$	$2.6(2.6)$	3.1	$6.1(2.9)$	$1.4(2.1)$	
$\mathrm{Cu}^{\text {I }}$	$N_{\text {obs }}$	39	0	188	10	
	$\langle\delta\rangle(\sigma)$	$6.2(5.0)$		$15(6)$	$17(10)$	
$\mathrm{Cu}^{\text {II }}$	$N_{\text {obs }}$	79	87	54	649	
	$\langle\delta\rangle(\sigma)$	$17(3)$	$5.5(7.1)$	$18.4(4)$	$7.0(5.4)$	
Zn	$N_{\text {obs }}$	237	0	260	71	
	$\langle\delta\rangle(\sigma)$	$4.3(2.2)$		$11(5)$	$2.1(5.6)$	

(c) $M L_{4}$ complexes with additional weak interactions, numbers and mean values of $\delta_{\text {tet }}$ and $\delta_{\text {sqp }}$, in ${ }^{\circ}$, from ideal geometry, together with their sample standard deviations. The standard deviations of the means may be obtained by dividing by $N_{\mathrm{obs}}^{1 / 2}$.

		Non-chelated			Chelated	
		Tetrahedral	Square planar		Tetrahedral	Square planar
$\mathrm{Cu}^{\text {II }}$	$N_{\text {obs }}$	5	266	6	1632	
	$\langle\delta\rangle(\sigma)$	$17(8)$	$2.5(3.3)$		$25(4)$	$8.0(4.1)$
Zn	$N_{\text {obs }}$	43	1	91	44	
	$\langle\delta\rangle(\sigma)$	$10(4)$	3.0	$13(5)$	$0.8(2.0)$	

$\dagger \mathrm{Mn}^{\mathrm{II}}, 38$ without, seven with additional contacts; $\mathrm{Mn}^{\mathrm{III}}$, no $M L_{4}$ complexes. $\ddagger \mathrm{Fe}^{\mathrm{II}}, 49$ without, 13 with additional contacts. $\mathrm{Fe}^{\mathrm{III}}, 77$ without, none with additional contacts.
$M L_{6}$ fragments were found using the maximum allowable metal-donor atom distances shown in Table 1 and were separated into two groups: those with no chelation (metal atom acyclic) and those with some chelation (metal atom cyclic). For each $M L_{6}$ fragment, QUEST extracted the 15 interbond angles $a_{i j}$ (see Fig. $1 a$). With a separate local program, $\delta_{\text {oct }}$, the r.m.s deviation of these 15 angles from their ideal values was evaluated:

$$
\delta_{\mathrm{oct}}=\left[\sum_{i=1}^{15}\left(a_{i}-a_{\mathrm{ideal}}\right)^{2} / 15\right]^{1 / 2}
$$

If the ligands are labelled so that a_{12} is the largest of the 15 angles and a_{34} is the next largest, the ideal value for a_{12}, a_{34} and a_{56} is 180° and the ideal value for all the other angles is 90°.
(Strictly, only nine of the 15 angles are independent - the other six are related by spherical trigonometry; if $M L_{6}$ is on a crystallographic inversion centre, only three of the angles are independent.)

Five- and four-coordinate complexes $M L_{5}$ and $M L_{4}$ were similarly found using the cutoff distances shown in Table 2 and were each separated into two groups: those which have and those which do not have additional weak $M \cdots \mathrm{O}$ or $M \cdots \mathrm{~N}$ interactions - identified in QUEST searches as 'non-bonded contacts' up to $3.0 \AA$ in length. They were then further subdivided into non-chelated and chelated complexes.

For $M L_{5}$ complexes, the ideal geometry may be a trigonal bipyramid or a tetragonal pyramid and $\delta_{\text {tbp }}$ and $\delta_{\text {tetp }}$ were similarly evaluated as the r.m.s. deviations of the ten interbond angles. As shown in Fig. 1(b), the ligands were labelled so that a_{12} and a_{34} are the largest and second largest angles, respectively; the second largest is irrelevant for the trigonal bipyramid, but for the tetragonal pyramid this labelling makes L_{5} the apex. In the trigonal bipyramid, the ideal values are 180° for $a_{12}, 120^{\circ}$ for a_{34}, a_{45} and a_{35}, and 90° for the others. In the tetragonal pyramid it is useful to define b_{m}, the mean of the four angles between the apical bond and the basal bonds, a_{15}, a_{25}, a_{35} and a_{45}. The ideal value for these four angles is then b_{m}; the ideal value for a_{12} and a_{34} is $\left(360^{\circ}-2 b_{m}\right)$ and the ideal value for a_{13}, a_{23}, a_{14} and a_{24} is $2 \sin ^{-1}\left\{2^{-1 / 2}\left[\sin \left(180^{\circ}-\right.\right.\right.$ $\left.b_{m}\right)$]\}. Then,

$$
\delta_{\mathrm{tbp}} \text { or } \delta_{\mathrm{tetp}}=\left[\sum_{i=1}^{10}\left(a_{i}-a_{\mathrm{ideal}}\right)^{2} / 10\right]^{1 / 2}
$$

Strictly, and in the absence of symmetry, only seven of the angles are independent. Again, QUEST extracted values for the ten angles and a separate local program evaluated $\delta_{\text {tbp }}$ and $\delta_{\text {tetp }}$; it also assigned the fragment as trigonal bipyramidal if $\delta_{\text {tbp }}<\delta_{\text {tetp }}$, otherwise it was assigned as tetragonal pyramidal.

For an $M L_{4}$ complex (Fig. 1c), two ideal geometries are considered, tetrahedral and square planar, and for each $M L_{4}$ complex $\delta_{\text {tet }}$ and $\delta_{\text {sqp }}$ were evaluated, the r.m.s. deviations of the six interbond angles from their ideal geometries (strictly, only five angles are independent). For tetrahedral geometry, the ideal value of each angle is 109.5°. The ligand labels are chosen so that a_{12} is the largest angle, so for square-planar geometry the ideal value of a_{12} and a_{34} is 180° and the ideal value for the other angles is 90°. The complex is tetrahedral if $\delta_{\text {tet }}<\delta_{\text {sqp }}$; otherwise it is square planar. For $M L_{4}$ complexes it was possible to extract the values of angles and carry out the calculation of $\delta_{\text {tet }}$ and $\delta_{\text {sqp }}$ and the assignment of geometry within QUEST. However, an additional local program was written to evaluate the deviation of each angle set from various symmetry elements of the tetrahedral or square planar arrangement, the fourfold inversion axis (of both), the threefold rotation axis (of tetrahedral) etc., $\delta_{\overline{4}}, \delta_{3}$ etc.

After δ had been evaluated for each $M L_{n}$ fragment ($n=4,5$ or 6), VISTA was used to evaluate the mean and the sample standard deviation of δ; these are given in the tables, together with the number, $N_{\text {obs }}$, of crystallographically independent observations. [Since δ for each fragment is already a root-
mean-square value for six or more angular distortions, the sample standard deviations overestimate the spread of the individual angular distortions. If we wished to obtain a standard deviation representing the spread of all the angular distortions in the sample, e.g. if we want the standard deviation of the 24 angular distortions in four $M L_{4}$ groups, not just the standard deviation of four δ values, we would need to multiply by $m^{-1 / 2}$, where m is the number of independent angle values in one fragment. When no crystallographic symmetry is present, m is five for $M L_{4}$, seven for $M L_{5}$ and nine for $M L_{6}$, but when an inversion centre is present within a fragment m is one for $M L_{4}$ and three for $M L_{6}$. (Other symmetry elements give intermediate reductions in m.) Two-thirds of the nonchelated $M L_{6}$ complexes do lie on crystallographic inversion centres.]
$\mathrm{Ca} L_{6}$ complexes have been examined along with other $M L_{6}$. $\mathrm{Ca} L_{7}$ and $\mathrm{Ca} L_{8}$ complexes have been extracted from the CSD using search queries analogous to that in Fig. 1(a). Detailed analysis of distortions of the geometry around Ca has not been performed, but the distributions of $\mathrm{O}-M-\mathrm{O}$ angles and the distributions of $\mathrm{O} \cdots \mathrm{O}$ distances within the first coordination sphere around Ca have been derived.

Ranges of δ values are not quoted here, but were recorded and are usually a little less than $\langle\delta\rangle \pm 3 \sigma$. In all the searches R factors and sigf (a QUEST indicator of bond-length e.s.d.s) were also extracted and it was checked that there were no trends in δ values with R or sigf. Many individual structures were examined as chemical and stereochemical diagrams. Outliers occasionally indicated errors; for example, a $\mathrm{Cu}^{\mathrm{II}}$ structure wrongly named as Cu^{I}; in such cases the structure was removed. More often, the inspection of outliers helped in understanding the factors that affect the distributions.

3. Results and discussion

Tables 1, 2 and 3 show the mean values of δ resulting from the various searches and the sample standard deviations representing the spread of values found for $M L_{6}, M L_{4}$ and $M L_{5}$ complexes, respectively. The numbers of observations in each category give a rough indication of the relative importance of different geometries for different metals. The δ values represent r.m.s. distortions of interbond angles from the ideal values in the different shapes of complexes. These distortions might be a consequence of one or more of the following: (i) experimental uncertainties in determination of crystal structure, (ii) intramolecular effects, electronic or steric, (iii) intermolecular effects, sometimes called 'packing forces', (iv) the existence of additional partial $M \cdots L$ bonds [this could be considered as a part of (ii) or (iii), but it is found here to be an important factor and is therefore listed separately].

It will be shown that for the metals studied here the distortions in $M L_{6}$ complexes are comparatively small and consistent with (i) to (iii) as causes, whereas in $M L_{4}$ and $M L_{5}$ complexes larger distortions occur. In quite a number of $M L_{4}$ and $M L_{5}$ complexes substantial distortions can be associated with the presence of a fifth or sixth more weakly interacting ligand. With $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{III}}$ some longer $M \cdots \mathrm{O}, \mathrm{N}$ distances
are expected as a result of the Jahn-Teller effect. They also occur for Zn , for which there can be no Jahn-Teller effect. All complexes in which such weak interactions occur are treated as a separate group and the main analysis of distortion in $M L_{4}$ and $M L_{5}$ complexes excludes complexes in which there are additional weak interactions.

3.1. Experimental uncertainties and packing effects

(i) and (iii) are fairly small. The absence of a correlation between δ values and crystallographic R factor or sigf suggests
that experimental uncertainty in crystal structure determination, (i), is not a substantial contributor to the effects seen. An estimate has been made by Martin \& Orpen (1996) for complexes of transition metals with chloride, acetylacetonate and pyridine ligands by examining duplicate structure determinations and determinations where identical chemical units occur more than once in the crystallographic asymmetric unit, i.e. cases where (ii) and (iv) are absent. They selected fairly high accuracy structure determinations ($R<0.07$ etc.) and found bond-angle variations, expressed as standard deviations, of $\sim 1.5^{\circ}$; this represents mainly or entirely 'packing forces',

Figure 2
Plots of $\delta_{\text {tet }}$ versus $\delta_{\text {sqp }}$ for $M L_{4}$ complexes of (a) non-chelated $\mathrm{Cu}^{\text {II }},(b)$ chelated $\mathrm{Cu}^{\text {II }},(c)$ non-chelated $\mathrm{Zn},(d)$ chelated Zn . An ideal tetrahedral complex has $\delta_{\text {sqp }}=44^{\circ}, \delta_{\text {tet }}=0$; a perfect square-planar complex has $\delta_{\text {sqp }}=0, \delta_{\text {tet }}=44^{\circ}$. Complexes with $\delta_{3}<3^{\circ}$ are represented by triangles, complexes with $\delta_{\overline{4}}<3^{\circ}$ are represented by squares and all other complexes are represented by circles. Note that the ranges in (c) are different from those in the other plots.
since the experimental uncertainty in crystal structure determination is much smaller than this. A similar estimate has been made here by examining examples of $\left[\mathrm{Mg}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ in the CSD; their mean $\delta_{\text {oct }}$ is found to be $1.7(1.0)^{\circ}$.

3.2. Chelation

Chelated and non-chelated complexes have been separated in the tabulations below and it will be seen that distortions found in the chelated complexes are often much larger (two or three times as great) than those in unchelated complexes. In most of these, the chelate ring includes the metal atom and three, four or five other atoms ($\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}$ etc.); in this case, closure of the ring requires substantial distortion of bond angles and the bond angles at the metal atom are likely to be the most easily distorted. Metalloproteins are usually also formally chelated, but if the donor atoms belong to two or more side chains of a polypeptide chain the ring involves 10 15 atoms or many more; in this case, ring closure should be achieved by distortion of torsion angles from their ideal values rather than by distortion of bond angles. Thus, the acceptable distortions tabulated for non-chelated complexes should be those normally relevant to metalloproteins, apart from the cases where the metal coordination group includes bidentate carboxylate. A distortion of magnitude comparable to that found in chelated complexes may suggest activation of the metal towards a catalytically active state.

3.3. Six-coordinate complexes

For $M L_{6}$ with the metals $\mathrm{Mg}-\mathrm{Zn}, \delta_{\text {oct }}$ should give a reasonable indication of the variations (ii), intramolecular effects, added to those of experimental uncertainty and crystal packing effects, (i) and (iii). Values are given in Table 1. For all the non-chelated complexes the mean $\delta_{\text {oct }}$ is 2.2°, which does not greatly exceed the Martin \& Orpen estimate of (i) and (iii), the experimental uncertainty and crystal packing effects, and suggests that intramolecular effects are small. However, for chelated complexes the mean $\delta_{\text {oct }}$ increases to 8.5°, a clear indication that the favourable energy change of chelate formation can easily outweigh the unfavourable energy of distorting an $L-M-L$ bond from its ideal value. The variations from metal to metal are small, but Mn appears to be a little more distortable than any of the other metal ions. In $\mathrm{Ca} L_{6}$ the distortions are twice as great and this is discussed subsequently.

3.4. Four-coordinate complexes, $M L_{4}$, without additional weak interactions

It is not difficult to classify these as tetrahedral or square planar according to whether $\delta_{\text {tet }}$ or $\delta_{\text {sqp }}$ is smaller. Table $2(b)$ shows, as is already well known, that for all the metals except $\mathrm{Cu}^{\mathrm{II}}$ a tetrahedral configuration is clearly preferred and is found for virtually all the non-chelated complexes; chelating ligands can force the metal into the less favourable squareplanar geometry. For $\mathrm{Cu}^{\mathrm{II}}$ square-planar geometry is clearly preferred, but bulky or chelating ligands can force it to be near-tetrahedral. For the 465 non-chelated complexes of
metals other than $\mathrm{Cu}^{\text {II }}$ the mean $\delta_{\text {tet }}$ is $4.0(2.8)^{\circ}$. Distortions of these $M L_{4}$ from tetrahedral are thus twice as great as the average distortion of $M L_{6}$ from octahedral. Examination of individual structures shows that large $\delta_{\text {tet }}$ values generally correspond to complexes with bulky ligands. For reasons similar to those for $M L_{6}$ complexes, the distortions in chelated $M L_{4}$ are substantially larger than in non-chelated $M L_{4}$; the mean $\delta_{\text {tet }}$ is $11(5)^{\circ}$. Chelation can often force the geometry to be square planar or nearly so; for many of the examples in which this occurs the ligand is a porphyrin. For non-chelated complexes, variations of $\left\langle\delta_{\text {tet }}\right\rangle$ from metal to metal are again small, but follow the same pattern as those of $\left\langle\delta_{\text {oct }}\right\rangle$; the differences are statistically significant when the standard deviation of the mean is considered rather than the sample standard deviation given in the table. A very detailed analysis of distortions in $\mathrm{Cu}^{\mathrm{II}} L_{4}$ complexes taking fuller account of the symmetry of the distortions has recently been published (Raithby et al., 2000).

The existence of complexes which lie on 'the transformation pathway' of conversion from tetrahedral to square planar has been extensively discussed (Klebe \& Weber, 1994). Here, they are illustrated in Figs. 2(a) and 2(b) for $\mathrm{Cu}^{\mathrm{II}}$ complexes using $\delta_{\text {tet }}$ and $\delta_{\text {sqp }}$. The simplest transformation path involves compression of the tetrahedral complex along its fourfold inversion axis with maintenance of the $\overline{4}$ symmetry. The figures show that the complexes lying close to the line joining the ideal tetrahedral to the ideal square-planar configuration do have small $\delta_{\overline{4}}$, confirming that the line does indeed represent this transformation path. For non-chelated $\mathrm{Cu}^{\text {II }}$ most complexes lie close to this path and show that a wide range of positions along it is acceptable; many of these are CuCl_{4}^{2-} in combination with different cations. A small branch near the square-planar position represents another kind of distortion which maintains the inversion centre of the square-planar configuration. The distribution for chelated $\mathrm{Cu}^{\mathrm{II}}$ is similar, but with larger distortions and many complexes which fall some way off the ideal transformation path, no doubt as a result of the chelating ligands. Zinc complexes are similarly displayed in Figs. 2(c) and 2(d). The non-chelated complexes do not extend very far up the transformation path. Only a small proportion of the distortions conform to $\overline{4}$ symmetry; some appear to maintain approximate threefold symmetry and the rest of the distortions should probably be regarded as random. Generally, large $\delta_{\text {tet }}$ values ($>8^{\circ}$) can be attributed to bulky ligands, often branched at the donor atom. With chelated ligands, the characteristics of the distribution are similar, though with larger $\delta_{\text {tet }}$ values and a little more extension up the $\overline{4}$ transformation path; a group of examples near the ideal square-planar position are also seen where porphyrins or similar ligands have forced this geometry. The distribution for Zn is thus strikingly different from that for $\mathrm{Cu}^{\mathrm{II}}$. Distributions for $\mathrm{Cu}^{\mathrm{I}}, \mathrm{Mn}, \mathrm{Fe}$ and Mg are very similar to those for Zn .

3.5. Five-coordinate complexes

Five-coordinate complexes $M L_{5}$ can be classified as trigonal bipyramidal (tbp) or tetragonal pyramidal (tetp) according to
whether $\delta_{\text {tbp }}$ or $\delta_{\text {tetp }}$ is smaller. The number of non-chelated complexes is small. Non-chelated $\mathrm{Cu}^{\mathrm{II}}$ shows the full range from tbp to tetp, but with tetp much commoner (Fig. 3a); there is little distortion away from the tbp to tetp path, assuming this is represented by the straight line joining the tbp and tetp positions. (For a detailed discussion of the tbp to tetp transformation, see Auf der Heyde \& Burgi, 1989; Auf der Heyde, 1994; Ferretti et al., 1996.). Chelated $M L_{5}$ are much commoner and tetp is clearly favoured. The distributions for chelated $\mathrm{Cu}^{\mathrm{II}}$ and Zn are illustrated in Figs. 3(b) and 3(c); the other distributions are similar. A large proportion of chelated $M L_{5}$

have $\delta_{\text {tetp }}<8^{\circ}$; it is noticeable that none have $\delta_{\text {tbp }}<3.0^{\circ}$. There are also substantial distortions away from the tbp to tetp path, the greatest of which occur when the metal is part of a fourmembered ring. Larger numbers of S or Cl donors tend to favour tbp.

3.6. $M L_{4}$ and $M L_{5}$ complexes with additional weak interactions

The numbers of these complexes are given in Tables 2(a) and $3(a)$, showing how significant these can be, especially with Zn and Cu . The interactions can be intermolecular or intramolecular. The commonest donors are carboxylate O, nitrate or nitrite O , but perchlorate O , water O , heterocyclic O or N , thiocyanate N , secondary or tertiary N of alicyclic ligands and a variety of others are found. Fig. 4(a) shows the distribution of observed distances in $\mathrm{Zn} L_{4}$ complexes; this is continuous up to $3.0 \AA$. ($3.0 \AA$ is an arbitrary cutoff; interactions beyond this may be possible, but they are weak and difficult to distinguish from van der Waals contacts.) In tetrahedral $\mathrm{Zn} L_{4}$ complexes, the mean distortion of the non-chelated complexes is about twice that of complexes without additional weak interactions (Table $2 c$). If they are treated as $M L_{5}$ or $M L_{6}$ they are still quite distorted. If there are two additional weak interactions, resulting in a pseudo- $M L_{6}$ complex, the angle between the two $\mathrm{M} \cdots \mathrm{N}, \mathrm{O}$ directions ranges from 28 to 180°, with no clear division into cis and trans. In square-planar $\mathrm{Cu} L_{4}$ and $\mathrm{Zn} L_{4}$ complexes the distortion is not great because the new donors occupy the fifth or fifth and sixth positions of a tetragonal pyramid or octahedron. Likewise, since most $M L_{5}$ complexes are tetragonal pyramidal, an additional weakly interacting donor need not cause much distortion of this symmetry, although it may change the base angle b_{m} of the complex.

(c)

Figure 3
Plots of $\delta_{\text {tbp }}$ versus $\delta_{\text {tetp }}$ for $M L_{5}$ complexes of (a) non-chelated $\mathrm{Cu}^{\mathrm{II}},(b)$ chelated $\mathrm{Cu}^{\mathrm{II}},(c)$ chelated Zn . An ideal trigonal bipyramidal complex has $\delta_{\text {tbp }}=0, \delta_{\text {tetp }}=17^{\circ}$; an ideal tetragonal pyramidal complex with $b_{m}=105^{\circ}$ has $\delta_{\text {tbp }}=17^{\circ}, \delta_{\text {tetp }}=0$. A circle represents a ligand with N, O donors only, a rhombus one with one or two S or Cl donors and a triangle one with three or more S or Cl donors. The distributions for Mn and Fe are very similar.

3.7. Weak interactions - bond-length and bond-valence considerations

The continuous range of observed $\mathrm{Zn}-\mathrm{O}$ distances is shown in Fig. 5 for carboxylate coordination in the complexes $\left(R \mathrm{CO}_{2}\right)_{2} \mathrm{Zn}\left(\mathrm{OH}_{2}\right)_{2}$ and $\left(R \mathrm{CO}_{2}\right)_{2} \mathrm{Zn}$ (imidazole) $)_{2}$. The structures have been fairly accurately determined ($R \leq 0.070$) and the distances $\mathrm{Zn}-\mathrm{O} 1, \mathrm{Zn}-\mathrm{O} 2$ to the two O atoms in one carboxylate group are clearly inversely correlated.

It is useful to consider weak interactions as weak bonds and compare their bond valence with that of 'normal' $M-\mathrm{N}$ or $M-\mathrm{O}$ bonds. Brown uses the concept of bond-valence sum at

For $M L_{4}$ complexes, distribution of $M \cdots \mathrm{~N}, \mathrm{O}$ distances greater than the cutoff distances given in Table 2(a) (a) for Zn and (b) for $\mathrm{Cu}(\mathrm{II})$.
each cation or anion (Brown, 1992; see also See et al., 1998, who estimate bond orders in simple metal coordination complexes). For each bond,

$$
\text { bond valence }=\exp \left[\left(R_{i j}-\text { bond distance }\right) / 0.37\right]
$$

where $R_{i j}$ is a sum of anion and cation radii. The bond-valence sum at a divalent metal ion should be ~ 2, whether it is made up of four bonds of valence ~ 0.5 or six of ~ 0.33 or some other combination. For ionic compounds, bond-valence sums are in good agreement with expectations. For partially covalent complexes, such as the metal complexes here, there is rough agreement, although to obtain more precise agreement the Lewis base strength of the ligand would need to be taken into account (and possibly other factors). According to the above equation and with $R_{i j}=1.66 \AA$, a normal $\mathrm{Zn}-\mathrm{O}$ bond of length 2.00-2.10 Å would have a bond valence $0.40-0.30$, while a bond of length $2.75 \AA$ A would have a bond valence 0.05 . Thus, the bond-valence contribution of this long bond is quite small, but the presence of the weakly bonded atom can have a substantial effect on the geometry, particularly in distorting Zn complexes from regular tetrahedral (see Table $2 c$). In $\mathrm{Cu}^{\mathrm{II}}$ complexes the Jahn-Teller effect can provide an explanation for some of the longer distances; their distribution (Fig. 4b) is very different from those of Zn (Fig. $4 a$). It could well be appropriate to regard $\mathrm{Cu} \cdots \mathrm{N}, \mathrm{O}$ distances up to 2.5 or $2.6 \AA$ as 'normal' for axial bonds in $M L_{5}$ or $M L_{6}$, but there is still a very

Figure 5
Distances $\mathrm{Zn}-\mathrm{O} 1$ and $\mathrm{Zn}-\mathrm{O} 2$ to the two O atoms in one carboxylate group in the complexes $\left(R \mathrm{CO}_{2}\right)_{2} \mathrm{Zn}\left(\mathrm{OH}_{2}\right)_{2} \quad$ (circles) and $\left(R \mathrm{CO}_{2}\right)_{2} \mathrm{Zn}$ (imidazole) $)_{2}$ (triangles). All structures were determined with crystallographic $R<0.070$. The refcodes, chemical composition, references and distances for the 17 compounds are deposited as supplementary material. ${ }^{1}$

[^0]Table 3
$M L_{5}$ complexes.
(a) Numbers of $M L_{5}$ complexes (N_{obs}) with and without additional weak interactions $M \cdots \mathrm{~N}, \mathrm{O}$ up to $3.0 \AA$. The maximum distances assumed for $M-$ N, O bonds are the same as those for $M L_{4}$ complexes.

	Mg	Mn	Fe	Cu^{I}	$\mathrm{Cu}^{\mathrm{II}}$	Zn
Without additional interactions	28	87	224	13	575	259
With one additional interaction	3	46	20	0	91	39
With two or more additional interactions	0	6	5	1	3	7

(b) $M L_{5}$ complexes without additional weak interactions, numbers and mean values of $\delta_{\text {tbp }}$ and $\delta_{\text {tetp }}$, in ${ }^{\circ}$, from ideal geometry, together with their sample standard deviations. The standard deviations of the means may be obtained by dividing by $N_{\text {obs }}^{1 / 2}$.

		Non-chelated		Chelated	
		Trigonal bipyramidal	Tetragonal pyramidal	Trigonal bipyramidal	Tetragonal pyramidal
Mg	$N_{\text {obs }}$	0	1	8	19
	$\langle\delta\rangle(\sigma)$	-	4	11 (5)	5 (4)
Mn	$N_{\text {obs }}$	1	3	21	62
	$\langle\delta\rangle(\sigma)$	7	6 (3)	9 (4)	5 (4)
Fe	$N_{\text {obs }}$	4	0	39	185
	$\langle\delta\rangle(\sigma)$	1 (1)	-	7 (3)	4 (3)
$\mathrm{Cu}^{\text {I }}$	$N_{\text {obs }}$	0	0	4	9
	$\langle\delta\rangle(\sigma)$	-	-	11 (8)	8 (2)
$\mathrm{Cu}^{\text {II }}$	$N_{\text {obs }}$	5	19	177	374
	$\langle\delta\rangle(\sigma)$	5 (4)	3 (3)	8 (3)	6 (3)
Zn	$N_{\text {obs }}$	0	0	103	156
	$\langle\delta\rangle(\sigma)$	-	-	9 (3)	6 (5)

(c) $M L_{5}$ complexes with additional weak interactions, numbers and mean values of $\delta_{\text {tbp }}$ and $\delta_{\text {tetp }}$, in ${ }^{\circ}$, from ideal geometry, together with their sample standard deviations. The standard deviations of the means may be obtained by dividing by $N_{\mathrm{obs}}^{1 / 2}$.

		Trigonal bipyramidal	Tetragonal pyramidal	Trigonal bipyramidal	Tetragonal pyramidal
Mn	$N_{\text {obs }}$	-	-	11	41
	$\langle\delta\rangle(\sigma)$			11 (3)	7 (5)
Fe	$N_{\text {obs }}$	-	-	3	23
	$\langle\delta\rangle(\sigma)$			14 (4)	9 (5)
$\mathrm{Cu}^{\text {II }}$	$N_{\text {obs }}$	0	6	8	85
	$\langle\delta\rangle(\sigma)$		4 (1)	11 (2)	8 (3)
Zn	$N_{\text {obs }}$	3	2	7	36
	$\langle\delta\rangle(\sigma)$	7 (6)	10 (?)	11 (4)	9 (5)

significant number of observed $\mathrm{Cu} \cdots \mathrm{N}, \mathrm{O}$ distances in the range 2.6-3.0 $\AA . \mathrm{Mn}^{\mathrm{III}}$ should also show the Jahn-Teller effect. None of the $\mathrm{Mn} L_{4}$ complexes with additional weak interactions (Table 2a) was identifiable as $\mathrm{Mn}^{\mathrm{II}}$; the $\mathrm{Mn} L_{5}$ complexes (Table $3 a$) include both $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{III}}$, which seem to have similar distributions of weak interaction distances.

3.8. Weak $M \cdots N, O$ interactions - some general observations

Fig. 6 shows the results of searching in the whole database (April 1999 release) for $M \cdots$ O contacts longer than an acceptable $M-\mathrm{O}$ bond distance (plus a small tolerance for experimental uncertainty in crystal structure determination

Table 4
Calcium complexes, some comparative data.
(a) Numbers of complexes found (in October 1999 release of CSD), $L=\mathrm{N}, \mathrm{O}$, S, Cl (but mostly O).

	Non-chelated	Chelated
$\mathrm{Ca} L_{6}$	41	33 (see Table 1)
$\mathrm{Ca} L_{7}$	16	71
$\mathrm{Ca} L_{8}$	1	97

(b) Nearest neighbour $\mathrm{O} \cdots \mathrm{O}$ distances (in \AA) in first coordination sphere around M.

	Minimum	Mean
$\mathrm{Ca} L_{6}$, non-chelated	3.00	$3.28(12)$
$\mathrm{Ca} L_{7}$, non-chelated	2.72	$3.06(17)$
$\mathrm{Ca} L_{8}$, non-chelated	2.86	$3.05(14)$ [one only, $\left.\mathrm{Ca}\left(\mathrm{OH}_{2}\right)_{8}^{2+}\right]$
$\mathrm{Mg} L_{6}$, non-chelated	2.78	$2.93(6)$
$\mathrm{Mn} L_{6}$, non-chelated	2.83	$3.08(10)$
$\mathrm{Zn} L_{6}$, non-chelated	2.66	$2.96(8)$
$\mathrm{Ca} L_{7}, \mathrm{Ca} L_{8}$ chelated	2.05 (nitrate)	
	2.17 (carboxylate)	
	2.4 (phosphate)	
	2.6 (other bi or multi-	
dentate ligands)		

and restricted to structures with $R<0.065)$. Rowland \& Taylor (1996) found histograms like this useful for evaluating the van der Waals radii of a variety of light atoms and halogens. In the absence of hydrogen bonding, $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts give a distribution similar in characteristics to that shown for $\mathrm{Fe} \cdots \mathrm{O}$ and with no contacts less than $3.1 \AA$. Inspection of the histograms of Fig. 6 shows striking differences between different metals. While there are very very few $\mathrm{Fe} \cdots \mathrm{O}$ contacts shorter than $3.0 \AA, \mathrm{Mg}$ and Mn show a few and Cu and Zn show very large numbers. $M \cdots \mathrm{O}$ contacts just larger than the lower cutoff distance assumed for a bond may simply represent a slightly poorly chosen limit and nearly 'normal' bonding, but distances in the range $2.5-3.0 \AA$ must represent some weak bonding. Even if $\mathrm{Cu} \cdots \mathrm{O}$ distances up to $2.6 \AA$ are regarded as normal bonds in a complex with Jahn-Teller distortion, the histogram shows that distances of 2.6-3.0 \AA also occur quite frequently. It is clear that weak bonds are quite common with Cu and Zn and are much less common with Mn and Fe (Tables $2 a, 3 a$ and Fig. 6), but it is not clear why this should be so; presumably, it would be necessary to look for an explanation in terms of electronic structure.

3.9. Simple geometrical considerations

The maximum coordination number (CN) for $\mathrm{Mg}-\mathrm{Zn}$ in unchelated complexes is normally six, a simple geometrical consequence of the relative size of the O or N donor atoms/ ions and the metal. (Coordination number seven does occur in chelated complexes with multidentate ligands, e.g. EDTA complexes.) Thus, when $\mathrm{CN}=6$ the donor atoms/ions are nearly close packed around M and there is little distortability of angles from ideal octahedral. When $\mathrm{CN}=4$ or 5 , the donor atoms/ions are not close packed and there is the possibility of additional weak coordination; both these factors may greatly
increase the distortability of the angles from ideal tetrahedral, square planar etc. as shown by the $\langle\delta\rangle$ values given here.

3.10. Calcium complexes

In calcium complexes the commonest coordination numbers are seven and eight, but $\mathrm{Ca} L_{6}$ also occurs (Table $4 a$); O donors are far commoner than any others. The geometry is determined by the possibilities of packing donor atoms (negative ions or atoms with available lone pairs of electrons) around the Ca^{2+} cation; i.e. the bonding is predominantly

ionic. This is in contrast to $M L_{4}$ and $M L_{5}$ with M a later transition metal, where a substantial directional contribution from covalency is expected. $\mathrm{Ca} L_{6}$ are octahedral, but with much larger distortions, $\delta_{\text {oct }}$, than are found for any of the other metals $\mathrm{Mg}-\mathrm{Zn}$ (see Table 1); this is easily understandable as a consequence of the greater size of the Ca ion. For $\mathrm{Ca} L_{7}$, an analysis of the angular distortions, δ, from pentagonal bipyramid (PBP) and capped trigonal prism (CTP) has not been performed here, but Howard et al. (1998) have described how this can be performed and have given distributions equivalent to $\delta_{\text {PBP }}$ and $\delta_{\text {CTP }}$ for all seven-coordinate

Figure 6

Distributions of $M \cdots$ O distances in the CSD (April 1999 release, $R<0.065$) greater than the cutoff distances given in Table 2(a). Effectively, for Mn ${ }^{\text {II }}$, Fe and Zn the distances shown here are longer than those usually regarded as bonding; for $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{III}}$ distances in the range up to 2.6 A might well be regarded as normal bonding distances in $M L_{5}$ or $M L_{6}$ when Jahn-Teller distortion is taken into account. (For Mg the distribution is not greatly different form that for Mn , but the total number of observations is much smaller.)
complexes in the CSD, treated together. The distribution of $\mathrm{O}-M-\mathrm{O}$ angles found in $\mathrm{Ca} L_{7}$ complexes is consistent with a mixture of PBP and CTP complexes, with appreciable distortions from the ideal angles of at least $5-10^{\circ}$ in non-chelated complexes and more in chelated ones. Rather than considering these angles in detail, it is probably more useful here to consider the donor O atoms distributed on the surface of a sphere around Ca with radius equal to the $\mathrm{Ca}-\mathrm{O}$ distance. This distribution is governed by the allowed $\mathrm{O} \cdots \mathrm{O}$ approach distance. Table 4(b) makes some comparisons. In non-chelated $\mathrm{Ca} L_{7}, \operatorname{Mg} L_{6}, \operatorname{Mn} L_{6}$ and $\mathrm{Zn} L_{6}$ the normal maximum coordination number has been reached and the distances between 'touching' O atoms in the first coordination sphere around M are very similar, with a minimum of $2.7 \AA$ and a mean of $3.0 \AA$. With chelating ligands, a much closer $\mathrm{O} \cdots \mathrm{O}$ approach may occur; this can result in larger distortions from ideal geometry or an increase to eight of the number of donor atoms around Ca - this is particularly common when carboxylate groups are present. Note that there is only one example of non-chelated $\mathrm{Ca} L_{8}$ in the $\mathrm{CSD}, \mathrm{Ca}\left(\mathrm{OH}_{2}\right)_{8}^{2+}$. In $\mathrm{Ca} L_{6}$ the $\mathrm{O} \cdots \mathrm{O}$ distances are larger than those which correspond to 'touching'.

4. Conclusions

For $\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Cu}$ and Zn tabulations of $\langle\delta\rangle$ and the sample standard deviations give a guide to the distortions from ideal values found for interbond angles in four-, five- and sixcoordinate complexes with $\mathrm{N}, \mathrm{O}, \mathrm{S}$ and Cl donor ligands. In non-chelated complexes of Mn, Fe and Zn , a cautious view would accept that distortions giving δ up to 5° in six-coordinate complexes and 10° in four-coordinate complexes are normal and are a consequence of packing effects, ligand bulk or other intramolecular effects (experimental uncertainty in crystal structure determination is also included within this, but is comparatively small). Six-coordinate complexes of $\mathrm{Cu}^{\mathrm{II}}$ are similar. In Mg complexes and in four-coordinate complexes of Cu^{I} somewhat greater distortions are not unusual, say up to 15°. In four-coordinate $\mathrm{Cu}^{\mathrm{II}}$ complexes, especially those with Cl or S ligands, nearly the whole path from tetrahedral to square-planar geometry appears to be acceptable, and likewise nearly the whole path from trigonal bipyramidal to tetragonal pyramidal geometry in five-coordinate $\mathrm{Cu}^{\mathrm{II}}$. Nonchelated $M L_{5}$ complexes of the other metals are too small in number for useful conclusions. The geometry of chelated complexes (other than those with bidentate carboxylate) is probably less relevant to metalloproteins, but in them the distortions can be substantially larger.

It is intended that the present analysis of metal-ligand geometry in small molecules will be followed by an analysis of the geometry found in metalloproteins using structural data in the Protein Data Bank (PDB; Bernstein et al., 1977). There are some difficulties in this analysis, because of the much larger
uncertainties in most protein structures resulting from lower resolution diffraction data and from the use of restraints in refinement, but it is very desirable to see how far the 'predictions' based on small-molecule structures hold in metalloproteins.

Weak bonding to additional ligands is observed in a substantial number of structures of Zn and Cu complexes, $M L_{4}$ and $M L_{5}$; a continuous range of $M \cdots \mathrm{~N}, \mathrm{O}$ distance between a bonding distance and a van der Waals contact seems to be possible. Similar geometry could well occur in metalloproteins; although the contribution to bond valence or bond energy is not great, the effect on geometry can be considerable (e.g. 10-20 distortions in $\mathrm{Zn} L_{4}$) and this could well be relevant to the understanding of catalytic activity. It would also be important to recognize the possibility of such interactions when interpreting electron-density maps of a metalloprotein.

I am grateful to Dr Jenny Glusker for encouraging my interest in this area, to Professor Malcolm Walkinshaw for laboratory space and computing facilities and Dr Paul Taylor for computational support and to the Cambridge Crystallographic Data Centre for their database and search systems.

References

Allen, F. H. \& Kennard, O. (1993a). Chem. Des. Autom. News, 8, 1. Allen, F. H. \& Kennard, O. (1993b). Chem. Des. Autom. News, 8, 3137.

Auf der Heyde, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 823-839.
Auf der Heyde, T. P. E. \& Burgi, H. B. (1989). Inorg. Chem. 28, 39603969.

Auf der Heyde, T. \& Nassimbeni, L. R. (1984). Acta Cryst. B40, 582590.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr, Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. \& Tasumi, M. (1977). J. Mol. Biol. 112, 535-542.

Bock, C. W., Katz, A. K., Markham, G. D. \& Glusker, J. P. (1999). J. Am. Chem. Soc. 121, 7360-7372.
Brown, I. D. (1992). Acta Cryst. B48, 553-572.
Ferretti, V., Gilli, P., Bertolasi, V. \& Gilli, G. (1996). Cryst. Rev. 5, 3-104.
Harding, M. M. (1999). Acta Cryst. D55, 1432-1443.
Howard, J. A. K., Copley, R. C. B., Yao, J. W. \& Allen, F. H. (1998). J. Chem. Soc. Chem. Commun. pp. 2175-2176.
Klebe, G. \& Weber, F. (1994). Acta Cryst. B50, 50-59.
Martin, A. \& Orpen, A. G. O. (1996). J. Am. Chem. Soc. 118, 14641470.

Raithby, P. R., Shields, G., Allen, F. H. \& Motherwell, W. D. S. (2000). Acta Cryst. B56, 444-454.
Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
See, R. F., Kruse, R. A. \& Strub, W. M. (1998). Inorg. Chem. 37, 53695375.

Zabrodsky, H., Peleg, S. \& Avnir, D. (1993). J. Am. Chem. Soc. 115, 8278-8289.

[^0]: ${ }^{1}$ Supplementary materials are available from the IUCr electronic archive (Reference: ad0108). Services for accessing these data are described at the back of the journal.

